Add like
Add dislike
Add to saved papers

Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye.

Polarization-sensitive optical coherence tomography (PS-OCT) enables noninvasive, high-resolution imaging of tissue polarization properties. In the anterior segments of human eyes, PS-OCT allows the visualization of birefringent and depolarizing structures. We present the use of PS-OCT for imaging the murine anterior eye. Using a spectral domain PS-OCT setup operating in the 840-nm regime, we performed in vivo volumetric imaging in anesthetized C57BL/6 mice. The polarization properties of murine anterior eye structures largely replicated those known from human PS-OCT imagery, suggesting that the mouse eye may also serve as a model system under polarization contrast. However, dissimilarities were found in the depolarizing structure of the iris which, as we confirmed in postmortem histological sections, were caused by anatomical differences between both species. In addition to the imaging of tissues in the anterior chamber and the iridocorneal angle, we demonstrate longitudinal PS-OCT imaging of the murine anterior segment during mydriasis as well as birefringence imaging of corneal pathology in an aged mouse.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app