Add like
Add dislike
Add to saved papers

Suppression of SOCS3 enhances TRAIL-induced cell growth inhibition through the upregulation of DR4 expression in renal cell carcinoma cells.

Oncotarget 2018 August 4
Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a tumor-selective apoptosis inducer that is expressed in natural killer cells, whose cytotoxicity is activated by interferon (IFN). We investigated the effect of suppressor of cytokine signaling (SOCS) 3 on the expression of TRAIL receptors (DR4) and on TRAIL sensitivity in renal cell carcinoma (RCC) cells.

Methods: Vector expression, RNA interference and IL-6 receptor antibody tocilizumab were used to investigate the functional role of SOCS3 in DR4 expression. Immunoprecipitation was employed to detect the biochemical interaction between SOCS3 and DR4. The expression of DR4 induced by combination with IFN-α and tocilizumab was also examined by immunohistochemical staining using mice xenograft model.

Results: DR4 expression was up-regulated by IFN stimulation in RCC cells. 786-O cells were resistant to TRAIL and showed higher SOCS3 expression. ACHN cells showed higher DR4 expression and lower SOCS3 expression. Suppression of SOCS3 up-regulated DR4 expression and enhanced the TRAIL sensitivity in 786-O cells. In ACHN cells, DR4 expression was down-regulated by transfection with pCI-SOCS3, and the cells became resistant to TRAIL. Immunoprecipitation revealed the biochemical interaction between SOCS3 and DR4. A marked increase in IFN-induced DR4 protein expression after tocilizumab treatment was observed by immunohistochemical staining in the tumor from the mice xenograft model.

Conclusions: Our results indicate that IFN and SOCS3 regulate DR4 expression in RCC cells. Combination therapy with IFN-α, tocilizumab and an anti-DR4 agonistic ligand appears to effectively inhibit advanced RCC cell growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app