Add like
Add dislike
Add to saved papers

Controllable stress patterns over multi-generation timescale in microfluidic devices.

The generation of complex temporal stress patterns may be instrumental to investigate the adaptive properties of individual cells submitted to environmental stress on physiological timescale. However, it is difficult to accurately control stress concentration over time in bulk experiments. Here, we describe a microfluidics-based protocol to induce tightly controllable H2 O2 stress in budding yeast while constantly monitoring cell growth with single cell resolution over multi-generation timescale. Moreover, we describe a simple methodology to produce ramping H2 O2 stress to investigate the homeostatic properties of the H2 O2 scavenging system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app