Add like
Add dislike
Add to saved papers

Microfluidics for cell sorting and single cell analysis from whole blood.

The complexity and dynamic evolution of cancer often result in tumor subpopulations containing distinctly heterogeneous cells. During metastasis, these also give rise to heterogeneous circulating tumor cells (CTCs) which are considered to be a hematogenous dissemination from the primary tumor. CTCs represent a viable less-invasive sampling opportunity, also known as liquid biopsy. However, current technological platforms that analyze entire CTC population are not effective due to cell-to-cell variability within the same population and this can manifest differences in genomic expression, cell cycle stages and eventually cellular responses to drug treatments. Here, we present a novel microfluidic approach that involves combination of two microfluidic chips operating under inertial fluid forces and hydrodynamic focusing to rapidly isolate and selectively retrieve bulk as well as single CTCs from whole blood for downstream single cell analysis. It is envisioned that this combinational approach to retrieve single CTCs can cater to several applications including more accurate disease diagnosis as well as formulation of personalized therapeutic strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app