Add like
Add dislike
Add to saved papers

Interspecific genetic maps in Miscanthus floridulus and M. sacchariflorus accelerate detection of QTLs associated with plant height and inflorescence.

Miscanthus is recognized as a promising lignocellulosic crop for the production of bioethanol and bioproducts worldwide. To facilitate the identification of agronomical important traits and establish genetics knowledge, two genetic maps were developed from a controlled interspecific cross between M. floridulus and M. sacchariflorus. A total of 650 SSR markers were mapped in M. floridulus, spanning 19 linkage groups and 2053.31 cM with an average interval of 3.25 cM. The map of M. sacchariflorus comprised 495 SSR markers in 19 linkage groups covering 1684.86 cM with an average interval of 3.54 cM. The estimation on genome length indicated that the genome coverage of parental genetic maps were 93.87% and 89.91%, respectively. Eighty-eight bi-parental common markers were allowed to connect the two maps, and six pairs of syntenic linkage groups were recognized. Furthermore, quantitative trait loci (QTL) mapping of three agronomic traits, namely, plant height (PH), heading time (HT), and flowering time (FT), demonstrated that a total of 66 QTLs were identified in four consecutive years using interval mapping and multiple-QTL model. The LOD value of these QTLs ranged from 2.51 to 10.60, and the phenotypic variation explained varied from 9.50 to 37.10%. QTL cluster in syntenic groups MF19/MS7 contained six stable QTLs associated with PH, HT, and FT. In conclusion, we report for the first time the genetic mapping of biomass traits in M. floridulus and M. sacchariflorus. These results will be a valuable genetic resource, facilitating the discovery of essential genes and breeding of Miscanthus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app