JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Relation of plasma ceramides to visceral adiposity, insulin resistance and the development of type 2 diabetes mellitus: the Dallas Heart Study.

Diabetologia 2018 December
AIMS/HYPOTHESIS: Ceramides are sphingolipids that contribute to insulin resistance in preclinical studies. We hypothesised that plasma ceramides would be associated with body fat distribution, insulin resistance and incident type 2 diabetes in a multi-ethnic cohort.

METHODS: A total of 1557 participants in the Dallas Heart Study without type 2 diabetes underwent measurements of metabolic biomarkers, fat depots by MRI and plasma ceramides by liquid chromatography-mass spectrometry. Diabetes outcomes were assessed after 7 years. Associations of body fat and insulin resistance with ceramides at baseline and of ceramides with incident diabetes outcomes were analysed.

RESULTS: The cohort had a mean age of 43 years, with 58% women, 45% black participants and a mean BMI of 28 kg/m2 . Total cholesterol levels were associated with all ceramides, but higher triacylglycerols and lower HDL-cholesterol and adiponectin were associated only with saturated fatty acid chain ceramides (p < 0.0003). After adjusting for clinical characteristics and total body fat, visceral adipose tissue was positively associated with saturated fatty acid ceramides (per SD, β = 0.16 to 0.18) and inversely associated with polyunsaturated fatty acid ceramides (β = -0.14 to -0.16, p < 0.001 for all). Lower-body subcutaneous fat showed an opposite pattern to that for visceral fat. HOMA-IR was positively associated with saturated (β = 0.08 to 0.09, p < 0.001) and inversely with polyunsaturated ceramides (β = -0.06 to -0.07, p < 0.05). Ceramides were not associated with incident type 2 diabetes after adjustment for clinical factors.

CONCLUSIONS/INTERPRETATION: Plasma ceramides demonstrate a biologically complex relationship with metabolic and imaging indicators of dysfunctional adiposity. The role of ceramides in a shared pathway of metabolic dysfunction linking visceral adiposity and insulin resistance requires further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app