Add like
Add dislike
Add to saved papers

Differential Proteomic Analysis Predicts Appropriate Applications for the Secretome of Adipose-Derived Mesenchymal Stem/Stromal Cells and Dermal Fibroblasts.

The adult stem cell secretome is currently under investigation as an alternative to cell-based therapy in regenerative medicine, thanks to the remarkable translational opportunity and the advantages in terms of handling and safety. In this perspective, we recently demonstrated the efficient performance of the adipose-derived mesenchymal stem/stromal cell (ASC) secretome in contrasting neuroinflammation in a murine model of diabetic neuropathy, where the administration of factors released by dermal fibroblasts (DFs) did not exert any effect. Up to now, the complex mixture of the constituents of the conditioned medium from ASCs has not been fully deepened, although its appropriate characterization is required in the perspective of a clinical use. Herein, we propose the differential proteomic approach for the identification of the players accounting for the functional effects of the cell secretome with the aim to unravel its appropriate applications. Out of 967 quantified proteins, 34 and 62 factors were found preponderantly or exclusively secreted by ASCs and DFs, respectively. This approach led to the recognition of distinct functions related to the conditioned medium of ASCs and DFs, with the former being involved in the regulation of neuronal death and apoptosis and the latter in bone metabolism and ossification. The proosteogenic effect of DF secretome was validated in vitro on human primary osteoblasts, providing a proof of concept of its osteoinductive potential. Besides discovering new applications of the cell type-specific secretome, the proposed strategy could allow the recognition of the cocktail of bioactive factors which might be responsible for the effects of conditioned media, thus providing a solid rationale to the implementation of a cell-free approach in several clinical scenarios involving tissue regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app