Add like
Add dislike
Add to saved papers

Quantifying scattering coefficient for multiple scattering effect by combining optical coherence tomography with finite-difference time-domain simulation method.

In optical coherence tomography (OCT) systems, to precisely obtain the scattering properties of samples is an essential issue in diagnostic applications. Especially with a higher density turbid medium, the light interferes among the adjacent scatters. Combining an OCT experiment with the finite-difference time-domain simulation method, the multiple scattering effect is shown to affect the scattering properties of medium depending on the interparticle spacing. The far-field scattering phase function of scatters with various diameters was simulated to further analyze the corresponding anisotropy factors, which can be introduced into the extended Huygens-Fresnel theory to find the scattering coefficient of measured samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app