Add like
Add dislike
Add to saved papers

Enhanced Manipulation of Human Mitochondrial DNA Heteroplasmy In Vitro Using Tunable mtZFN Technology.

As a platform capable of mtDNA heteroplasmy manipulation, mitochondrially targeted zinc-finger nuclease (mtZFN) technology holds significant potential for the future of mitochondrial genome engineering, in both laboratory and clinic. Recent work highlights the importance of finely controlled mtZFN levels in mitochondria, permitting far greater mtDNA heteroplasmy modification efficiencies than observed in early applications. An initial approach, differential fluorescence-activated cell sorting (dFACS), allowing selection of transfected cells expressing various levels of mtZFN, demonstrated improved heteroplasmy modification. A further, key optimization has been the use of an engineered hammerhead ribozyme as a means for dynamic regulation of mtZFN expression, which has allowed the development of a unique isogenic cellular model of mitochondrial dysfunction arising from mutations in mtDNA, known as mTUNE. Protocols detailing these transformative optimizations are described in this chapter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app