Add like
Add dislike
Add to saved papers

Biochemical re-programming of human dermal stem cells to neurons by increasing mitochondrial membrane potential.

Stem cells are generally believed to contain a small number of mitochondria, thus accounting for their glycolytic phenotype. We demonstrate here, however, that despite an indispensable glucose dependency, human dermal stem cells (hDSCs) contain very numerous mitochondria. Interestingly, these stem cells segregate into two distinct subpopulations. One exhibits high, the other low-mitochondrial membrane potentials (Δ ψm ). We have made the same observations with mouse neural stem cells (mNSCs) which serve here as a complementary model to hDSCs. Strikingly, pharmacologic inhibition of phosphoinositide 3-kinase (PI3K) increased the overall Δ ψm , decreased the dependency on glycolysis and led to formation of TUJ1 positive, electrophysiologically functional neuron-like cells in both mNSCs and hDSCs, even in the absence of any neuronal growth factors. Furthermore, of the two, it was the Δ ψm -high subpopulation which produced more mitochondrial reactive oxygen species (ROS) and showed an enhanced neuronal differentiation capacity as compared to the Δ ψm -low subpopulation. These data suggest that the Δ ψm -low stem cells may function as the dormant stem cell population to sustain future neuronal differentiation by avoiding excessive ROS production. Thus, chemical modulation of PI3K activity, switching the metabotype of hDSCs to neurons, may have potential as an autologous transplantation strategy for neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app