Journal Article
Review
Add like
Add dislike
Add to saved papers

Recent Advances in Functional-Polymer-Decorated Transition-Metal Nanomaterials for Bioimaging and Cancer Therapy.

ChemMedChem 2018 August 29
In this review, we focus on recent advances in the synthesis of polymer-functionalized transition-metal-based nanomaterials and follow this up by discussing their applications in bioimaging diagnosis and cancer therapy. Transition-metal-based nanomaterials show great potential in cancer therapy owing to their intensive near-IR absorption, excellent photothermal conversion efficiency, strong X-ray attenuation, and magnetic properties. Functional polymers are usually introduced by a one-step or multistep method to further endow these nanomaterials with great biocompatibility and physiological stability. Polymer-decorated transition-metal nanomaterials show great potential in multimodal imaging diagnosis (photoacoustic imaging, computed tomography, photoluminescence imaging, positron emission tomography, etc.) and cancer therapy (chemotherapy, photothermal therapy, microwave therapy, radiotherapy, photodynamic therapy). At the end of this review, the prospects of these polymer-decorated transition-metal-based nanomaterials are also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app