Add like
Add dislike
Add to saved papers

Trade and conservation implications of new beak and feather disease virus detection in native and introduced parrots.

Conservation Biology 2018 August 29
Psittacine beak and feather disease (PBFD), caused by Beak and feather disease virus (BFDV), has spread rapidly around the world, raising concerns for threatened species conservation and biosecurity associated with the global pet bird trade. The virus has been reported in several wild parrot populations, but data are lacking for many taxa and geographical areas with high parrot endemism. We aimed to advance understanding of BFDV distribution in many data-deficient areas and determine phylogenetic and biogeographic associations of the virus in 5 parrot species across Africa, the Indian Ocean islands, Asia, and Europe and focused specifically on the highly traded and invasive Psittacula krameri. Blood, feather, and tissue samples were screened for BFDV through standard polymerase chain reaction. Isolates obtained from positive individuals were then analyzed in a maximum likelihood phylogeny along with all other publically available global BFDV sequences. We detected BFDV in 8 countries where it was not known to occur previously, indicating the virus is more widely distributed than currently recognized. We documented for the first time the presence of BFDV in wild populations of P. krameri within its native range in Asia and Africa. We detected BFDV among introduced P. krameri in Mauritius and the Seychelles, raising concerns for island endemic species in the region. Phylogenetic relationships between viral sequences showed likely pathways of transmission between populations in southern Asia and western Africa. A high degree of phylogenetic relatedness between viral variants from geographically distant populations suggests recent introductions, likely driven by global trade. These findings highlight the need for effective regulation of international trade in live parrots, particularly in regions with high parrot endemism or vulnerable taxa where P. krameri could act as a reservoir host.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app