Add like
Add dislike
Add to saved papers

Impact of Heart Rate on Pulsatile Hemodynamic Performance in a Neonatal ECG-Synchronized ECLS System.

Artificial Organs 2018 August 29
The objective of this study was to evaluate the impact of rapid heart rate on pulsatile hemodynamic performance in a simulated neonatal extracorporeal life support (ECLS) system. The experimental circuit consisted of an i-cor diagonal pump, a Medos Hilite 800 LT oxygenator, an 8Fr Biomedicus arterial cannula, a 10Fr Biomedicus venous cannula, and six feet of 1/4 in ID tubing for arterial and venous lines. The circuit was primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at various heart rates (90, 120, and 150 bpm) and flow rates (200, 400, and 600mL/min) under nonpulsatile and pulsatile mode with pulsatile amplitudes of 1000-4000rpm (1000 rpm increments). Real-time pressure and flow data were recorded for analysis. The i-cor pump was capable of creating nonpulsatile and electrocardiography (ECG)-synchronized pulsatile flow, and automatically reducing pulsatile frequency by increasing the assist ratio at higher heart rates. Reduced pulsatile frequency led to lower hemodynamic energy generation but did not affect circuit pressure drop. Pulsatile flow delivered more hemodynamic energy to the pseudopatient when compared with nonpulsatile flow. The pump generated more hemodynamic energy with higher pulsatile amplitudes. The i-cor pump can automatically adjust the pulsatile assist ratio to create pulsatile flow at higher heart rates, although this caused some hemodynamic energy loss. Compared with nonpulsatile flow, pulsatile flow generated and transferred more hemodynamic energy to the neonate during ECLS (200-600mL/min), especially at high pulsatile amplitudes and low flow rates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app