Add like
Add dislike
Add to saved papers

Using the relative abundance of characteristic product ions in UHPLC-ESI-QTOF-MS 2 methods to identify isomers of resveratrol oligomers in extracts of Xinjiang winegrape stems.

Stilbenoids, particularly resveratrol and its oligomer, are abundantly present in grapes, and their antioxidant activities have been widely reported. A quick and simple method based on UHPLC-ESI-QTOF-MS2 was established for the fragmentation pathways analysis of trans-ε-Viniferin, cis-ε-Viniferin, trans-δ-Viniferin and (-)-Hopeaphenol. MS/MS experiments on the [M-H]- ions provided abundant structural information, especially regarding the relative abundance of the key product ion at m/z 347. The product ion was used to further identify structures in isomers of resveratrol dimers and its analogues. Based on the fragmentation pathways, we tentatively determined two compounds from the crude extracts of Xinjiang winegrape stems as Gnetin C and cis-Scirpusin A. Results from these experiments contribute to a more complete understanding of the stilbene compounds found in grape stems. The UHPLC-QTOF-MS2 method can be used for the rapid analysis of stilbenes compounds in plant materials, foods and wine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app