Add like
Add dislike
Add to saved papers

Hexagonal Grid Fields Optimally Encode Transitions in Spatiotemporal Sequences.

Neural Computation 2018 October
Grid cells of the rodent entorhinal cortex are essential for spatial navigation. Although their function is commonly believed to be either path integration or localization, the origin or purpose of their hexagonal firing fields remains disputed. Here they are proposed to arise as an optimal encoding of transitions in sequences. First, storage requirements for transitions in general episodic sequences are examined using propositional logic and graph theory. Subsequently, transitions in complete metric spaces are considered under the assumption of an ideal sampling of an input space. It is shown that memory capacity of neurons that have to encode multiple feasible spatial transitions is maximized by a hexagonal pattern. Grid cells are proposed to encode spatial transitions in spatiotemporal sequences, with the entorhinal-hippocampal loop forming a multitransition system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app