JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Using High-Throughput Animal or Cell-Based Models to Functionally Characterize GWAS Signals.

Purpose of Review: The advent of genome-wide association studies (GWASs) constituted a breakthrough in our understanding of the genetic architecture of multifactorial diseases. For Alzheimer's disease (AD), more than 20 risk loci have been identified. However, we are now facing three new challenges: (i) identifying the functional SNP or SNPs in each locus, (ii) identifying the causal gene(s) in each locus, and (iii) understanding these genes' contribution to pathogenesis.

Recent Findings: To address these issues and thus functionally characterize GWAS signals, a number of high-throughput strategies have been implemented in cell-based and whole-animal models. Here, we review high-throughput screening, high-content screening, and the use of the Drosophila model (primarily with reference to AD).

Summary: We describe how these strategies have been successfully used to functionally characterize the genes in GWAS-defined risk loci. In the future, these strategies should help to translate GWAS data into knowledge and treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app