Add like
Add dislike
Add to saved papers

Magnetic Resonance Imaging-Guided Drug Delivery to Breast Cancer Stem-Like Cells.

The feasibility of detecting breast cancer stem-like cells (BCSCs) with magnetic resonance imaging using extradomain-B of fibronectin (EDB-FN)-specific peptide (APTEDB )-conjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (APTEDB -TCL-SPIONs) is previously demonstrated. Here, doxorubicin (Dox)-loaded APTEDB -TCL-SPIONs (Dox@APTEDB -TCL-SPIONs) are generated and their theranostic ability in a BCSC xenograft mouse model is assessed. The Dox@APTEDB -TCL-SPIONs enable more efficient delivery of Dox to tumors than nontargeted Dox@TCL-SPIONs. Much greater inhibition of BCSC tumor growth is observed after treatment with the Dox@APTEDB -TCL-SPIONs than with either Dox@TCL-SPIONs or free Dox. Hypointense signals are observed in the majority of the mice in postcontrast but not precontrast T2*-weighted MR images of tumors 7 days after treatment with Dox@APTEDB -TCL-SPIONs. An inverse correlation is observed between signal intensity and both EDB-FN expression and response to chemotherapy. The data indicate Dox@APTEDB -TCL-SPIONs can detect BCSCs within tumors by targeting EDB-FN-expressing cells. These nanoparticles thus have theranostic potential in breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app