Add like
Add dislike
Add to saved papers

Screening of Serum Biomarkers for Distinguishing between Latent and Active Tuberculosis Using Proteome Microarray.

OBJECTIVE: To identify potential serum biomarkers for distinguishing between latent tuberculosis infection (LTBI) and active tuberculosis (TB).

METHODS: A proteome microarray containing 4,262 antigens was used for screening serum biomarkers of 40 serum samples from patients with LTBI and active TB at the systems level. The interaction network and functional classification of differentially expressed antigens were analyzed using STRING 10.0 and the TB database, respectively. Enzyme-linked immunosorbent assays (ELISA) were used to validate candidate antigens further using 279 samples. The diagnostic performances of candidate antigens were evaluated by receiver operating characteristic curve (ROC) analysis. Both antigen combination and logistic regression analysis were used to improve diagnostic ability.

RESULTS: Microarray results showed that levels of 152 Mycobacterium tuberculosis (Mtb)-antigen- specific IgG were significantly higher in active TB patients than in LTBI patients (P < 0.05), and these differentially expressed antigens showed stronger associations with each other and were involved in various biological processes. Eleven candidate antigens were further validated using ELISA and showed consistent results in microarray analysis. ROC analysis showed that antigens Rv2031c, Rv1408, and Rv2421c had higher areas under the curve (AUCs) of 0.8520, 0.8152, and 0.7970, respectively. In addition, both antigen combination and logistic regression analysis improved the diagnostic ability.

CONCLUSION: Several antigens have the potential to serve as serum biomarkers for discrimination between LTBI and active TB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app