Add like
Add dislike
Add to saved papers

Vasomotion of mice mesenteric arteries during low oxygen levels.

BACKGROUND: Ischemia of intestinal organs is a main cause of complications in surgical intensive care patients. Changes in the tonus of arteries contributing to vascular resistance play an important role in the determination of blood flow and thus oxygen supply of various abdominal organs. It is generally acknowledged that hypoxia itself is able to alter arterial tonus and thus blood flow.

METHODS: The present study compared the effects of various degrees of hypoxia on second-order mesenteric arteries from male C57BL/6J mice. After vessel isolation and preparation, we assessed vessel diameter using an arteriograph perfusion chamber. Investigating mechanisms promoting hypoxia-induced vasodilatation, we performed experiments in Ca2+ -containing and Ca2+ -free solutions, and furthermore, Ca2+ -influx was inhibited by NiCl2 , eNOS-/- -, and TASK1-/- -mice were investigated too.

RESULTS: Mild hypoxia 14.4% O2 induced, in 50% of mesenteric artery segments from wild-type (wt) mice, a vasodilatation; severe hypoxia recruited further segments responding with vasodilatation reaching 80% under anoxia. However, the extension of dilatation of luminal arterial diameter reduced from 1.96% ± 0.55 at 14.4% O2 to 0.68% ± 0.13 under anoxia. Arteries exposed to hypoxia in Ca2+ -free solution responded to lower oxygen levels with increasing degree of vasodilatation (0.85% ± 0.19 at 14.4% O2 vs. 1.53% ± 0.42 at 2.7% O2 ). Inhibition of voltage-gated Ca2+ -influx using NiCl2 completely diminished hypoxia-induced vasodilatation. Instead, all arterial segments investigated constricted. Furthermore, we did not observe altered hypoxia-induced vasomotion in eNOS-/- - or TASK1-/- mice compared to wt animals.

CONCLUSIONS: The present study demonstrated that hypoxic vasodilatation in mice mesenteric arteries is mediated by a NO-independent mechanism. In this experimental setting, we found evidence for Ca2+ -mediated activation of ion channels causing hypoxic vasodilatation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app