Add like
Add dislike
Add to saved papers

Insights into the release mechanism of astrocytic glutamate evoking in neurons NMDA receptor-mediated slow depolarizing inward currents.

Glia 2018 October
The gliotransmitter glutamate in different brain regions modulates neuronal excitability and synaptic transmission through a variety of mechanisms. Among the hallmarks of astrocytic glutamate release are the slow depolarizing inward currents (SICs) in neurons mediated by N-methyl-d-aspartate receptor activation. Different stimuli that evoke Ca2+ elevations in astrocytes induce neuronal SICs suggesting a Ca2+ -dependent exocytotic glutamate release mechanism of SIC generation. To gain new insights into this mechanism, we investigated the relationship between astrocytic Ca2+ elevations and neuronal SICs in mouse hippocampal slice preparations. Here we provide evidence that SICs, occurring either spontaneously or following a hypotonic challenge, are unchanged in the virtual absence of Ca2+ signal changes at astrocytic soma and processes, including spatially restricted Ca2+ microdomains. SICs are also unchanged in the presence of Bafilomycin A1 that after prolonged slice incubation depletes glutamate from astrocytic vesicles. We also found that hemichannels and TREK family channels-that recent studies proposed to mediate astrocytic glutamate release - are not involved in SIC generation. SICs are reduced by the volume-sensitive anion channel antagonists diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), quinine and fluoxetine, suggesting a possible contribution of these channels in SIC generation. Direct measurements of astrocytic glutamate release further confirm that hypotonicity-evoked gliotransmission is impaired following DIDS, quinine and fluoxetine while the exocytotic release of glutamate-that is proposed to mediate synaptic transmission modulation by astrocytes-remains unaffected. In conclusion, our data provide evidence that the release of glutamate generating SICs occurs independently on exocytotic Ca2+ -dependent glutamate release mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app