Add like
Add dislike
Add to saved papers

Sodium Reduction, miRNA Profiling and CVD Risk in Untreated Hypertensives: a Randomized, Double-Blind, Placebo-Controlled Trial.

Scientific Reports 2018 August 25
Sodium reduction decreases blood pressure (BP) and cardiovascular mortality. However, the underlying molecular mechanisms are not well understood. We tested the hypothesis that reduction of sodium intake would change miRNA expression in hypertensive patients, and those changes would be associated with improved cardiovascular phenotypes. A whole genome RNA sequencing was performed in paired serum samples collected at the end of usual sodium intake and reduced sodium intake periods from 10 (age 56.8 ± 8.9) untreated black male hypertensives, selected from a randomized crossover trial of sodium reduction as the discovery cohort. Validation was carried out by the PCR Serum/Plasma Focus panel profiling in paired samples in all 64 (50% males, age 50.2 ± 9.5) untreated black hypertensives from the same trial. Fifteen respondent miRNAs were identified in the discovery stage. miR-143-3p was replicated. Sodium reduction up-regulated miR-143-3p. The increase in miR-143-3p was associated with the reduction of BP and arterial stiffness and the increase in skin capillary density. In conclusion, dietary sodium reduction alters circulating miRNA expressions, and those miRNA changes are associated with reduced BP and improved arterial compliance in untreated black hypertensives, suggesting that miRNA regulation may be one of the underlying mechanisms that dietary sodium regulates cardiovascular health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app