JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

IRAK1 Limits TLR3/4- and IFNAR-Driven IL-27 Production through a STAT1-Dependent Mechanism.

Journal of Immunology 2018 October 2
IL-27 is a cytokine exerting pleiotropic immunomodulatory effects on a broad spectrum of immune cells. Optimal IL-27 production downstream of TLR3/4 ligand stimulation relies on autocrine type I IFN signaling, defining a first and second phase in IL-27 production. This work shows that IL-1 receptor-associated kinase 1 (IRAK1) limits TLR3/4- and IFNAR-induced IL-27 production. At the mechanistic level, we identified IRAK1 as a novel regulator of STAT1, IRF1, and IRF9. We found hyperactivation of STAT1 together with increased nuclear levels of IRF1 and IRF9 in IRAK1-deficient murine macrophages compared with control cells following stimulation with LPS and poly(I:C). IRAK1-deficient human microglial cells showed higher basal levels of STAT1 and STAT2 compared with control cells. Blocking the kinase activity of TBK1/IKKε in IRAK1 knockdown human microglial cells reduced the high basal levels of STAT1/2, uncovering a TBK1/IKKε kinase-dependent mechanism controlling basal levels of STAT1/2. Stimulating IRAK1 knockdown human microglial cells with IFN-β led to increased IL-27p28 expression compared with control cells. In IRAK1-deficient murine macrophages, increased IL-27 levels were detected by ELISA following IFN-β stimulation compared with control macrophages together with increased nuclear levels of p-STAT1, IRF1, and IRF9. Treatment of wild-type and IRAK1-deficient murine macrophages with fludarabine similarly reduced TLR3/4-induced IL-27 cytokine levels. To our knowledge, this work represents the first report placing IRAK1 in the IFNAR pathway and identifies IRAK1 as an important regulator of STAT1, controlling IL-27 production downstream of TLR3/4 and IFNAR signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app