Add like
Add dislike
Add to saved papers

2-Pyridone-functionalized Aza-BODIPY photosensitizer for imaging-guided sustainable phototherapy.

Biomaterials 2018 August 19
To overcome irradiation-dependence of cancer phototherapy, a near infrared aza-BODIPY-based photothermogenic photosensitizer BDY with 2-Pyridone group has been synthesized for imaging-guided photothermal synergistic sustainable photodynamic therapy. Multifunctional water-soluble BDY nanoparticles (NPs), with high photothermal conversion efficiency of 35.7% and excellent singlet oxygen (1 O2 ) generation ability, are prepared by self-assembling. The reversible transformation between 2-pyridone moiety and its endoperoxide form endows BDY with continuous 1 O2 generation ability under illumination and non-illumination conditions. Simultaneously, BDY NPs exhibit excellent tumor targeting properties by enhanced permeability and retention (EPR) effect and photoacoustic imaging (PAI) ability. Furthermore, the photothermal assisted sustainable photodynamic therapy can significantly inhibit tumor growth (93.4% inhibition) with almost no side effects by intermittent laser illumination. The finding highlights that this photothermal synergistic sustainable phototherapy presents great potential for clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app