Add like
Add dislike
Add to saved papers

Designing Three-Dimensional Architectures for High-Performance Electron Accepting Pseudocapacitors.

By storing energy from electrochemical processes at the electrode surface, pseudocapacitors bridge the performance gap between electrostatic double-layer capacitors and batteries. In this context, molecular design offers the exciting possibility to create tunable and inexpensive organic electroactive materials. Here we describe a porous structure composed of perylene diimide and triptycene subunits and demonstrate its remarkable performance as a pseudocapacitor electrode material. The material exhibits capacitance values as high as 350 F/g at 0.2 A/g as well as excellent stability over 10 000 cycles. Moreover, we can alter the performance of the material, from battery-like (storing more charge at low rates) to capacitor-like (faster charge cycling), by modifying the structure of the pores via flow photocyclization. Organic materials capable of stable electron accepting pseudocapacitor behavior are rare and the capacitance values presented here are among the highest reported. More broadly, this work establishes molecular design and synthesis as a powerful approach for creating tunable energy storage materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app