Add like
Add dislike
Add to saved papers

Antiviral activity of Schizonepeta tenuifolia Briquet against noroviruses via induction of antiviral interferons.

Human noroviruses are the causative agents of non-bacterial gastroenteritis worldwide. The rapid onset and resolution of disease symptoms suggest that innate immune responses are critical for controlling norovirus infection; however, no effective antivirals are yet available. The present study was conducted to examine the antiviral activities of Schizonepeta tenuifolia Briquet extract (STE) against noroviruses. Treatment of human norovirus replicon-bearing HG23 cells with STE at 5 and 10 mg/ml concentrations resulted in the reduction in the viral RNA levels by 77.2% and 85.9%, respectively. STE had no cytotoxic effects on HG23 cells. Treatment of RAW 264.7 cells infected with murine norovirus 1 (MNV-1), a surrogate virus of human noroviruses, with STE at 10 and 20 µg/ml concentrations resulted in the reduction of viral replication by 58.5% and 84.9%, respectively. STE treatment induced the expression of mRNAs for type I and type II interferons in HG23 cells and upregulated the transcription of interferon-β in infected RAW 264.7 cells via increased phosphorylation of interferon regulatory factor 3, a critical transcription regulator for type I interferon production. These results suggest that STE inhibits norovirus replication through the induction of antiviral interferon production during virus replication and may serve as a candidate antiviral substance for treatment against noroviruses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app