Add like
Add dislike
Add to saved papers

Quantitative Characterization of Aortic Valve Endothelial Cell Viability and Morphology In Situ Under Cyclic Stretch.

Current protocols for mechanical preconditioning of tissue engineered heart valves have focused on application of pressure, flexure and fluid flow to stimulate collagen production, ECM remodeling and improving mechanical performance. The aim of this study was to determine if mechanical preconditioning with cyclic stretch could promote an intact endothelium that resembled the viability and morphology of a native valve. Confocal laser scanning microscopy was used to image endothelial cells on aortic valve strips subjected to static incubation or physiological strain regimens. An automated image analysis program was designed and implemented to detect and analyze live and dead cells in images captured of a live aortic valve endothelium. The images were preprocessed, segmented, and quantitatively analyzed for live/dead cell ratio, minimum neighbor distance and circularity. Significant differences in live/dead cellular ratio and the minimum distance between cells were observed between static and strained endothelia, indicating that cyclic strain is an important stimulus for maintaining a healthy endothelium. In conclusion, in vitro application of physiological levels of cyclic strain to tissue engineered heart valves seeded with autologous endothelial cells would be advantageous.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app