Add like
Add dislike
Add to saved papers

Moderate-to-heavy smoking in women is potentially associated with compromised cortical porosity and stiffness at the distal radius.

Though smokers have poor clinical outcomes after treatment for fractures, the skeletal effects of smoking are still debated. Our results showed that female smokers had 33% higher cortical bone porosity. Smoking targets cortical compartment microstructure and mechanics, and micron-scale variables are essential to better understand the specific effects of smoking.

PURPOSE: Smokers have poor outcomes in the clinic after treatment for fractures. However, skeletal effects of smoking are still debated. Inconsistencies in published data are likely due to macro-scale variables used to characterize bone differences due to smoking. Therefore, our goal was to characterize distal radius microstructure and macrostructure differences between smokers and non-smokers, and determine the degree to which smoking is associated with compartment-specific mechanical differences resulting from compromised cortical-trabecular microstructure.

METHODS: Data were acquired from 46 female smokers (35 to 64 years old), and 45 age- and body mass-matched female non-smokers. Distal radius microstructure and mechanical variables were determined from high-resolution peripheral quantitative computed tomography (HR-pQCT) images and multiscale finite element analysis. Distal radius macro-scale variables (bone volume, bone mineral content, volumetric bone mineral density [vBMD]) were determined from low-resolution images.

RESULTS: Age- and body mass index-adjusted results showed that cortical porosity was 33% higher (p < 0.01), and that cortical vBMD and stiffness were 3% and 8% lower, respectively (p < 0.05), among smokers. We also observed unloading of the cortical compartment in smokers. There were no differences in the macro-scale variables. Average HR-pQCT-derived vBMD was 8% lower (p < 0.05) in smokers corresponding to 5 years of postmenopausal loss.

CONCLUSION: Skeletal effects of smoking become evident at the micron level through a structurally and mechanically compromised cortical compartment, which partially explains the inconsistent results observed at the macro-level, and the poor clinical outcomes. Smoking may also compound postmenopausal effects on bone potentially placing women having undergone menopause at a greater risk for fracture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app