JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ophthalmic Nonsteroidal Anti-Inflammatory Drugs as a Therapy for Corneal Dystrophies Caused by SLC4A11 Mutation.

Purpose: SLC4A11 is a plasma membrane protein of corneal endothelial cells. Some mutations of the SLC4A11 gene result in SLC4A11 protein misfolding and failure to mature to the plasma membrane. This gives rise to some cases of Fuchs' endothelial corneal dystrophy (FECD) and congenital hereditary endothelial dystrophy (CHED). We screened ophthalmic nonsteroidal anti-inflammatory drugs (NSAIDs) for their ability to correct SLC4A11 folding defects.

Methods: Five ophthalmic NSAIDs were tested for their therapeutic potential in some genetic corneal dystrophy patients. HEK293 cells expressing CHED and FECD-causing SLC4A11 mutants were grown on 96-well dishes in the absence or presence of NSAIDs. Ability of NSAIDs to correct mutant SLC4A11 cell-surface trafficking was assessed with a bioluminescence resonance energy transfer (BRET) assay and by confocal microscopy. The ability of mutant SLC4A11-expressing cells to mediate water flux (SLC4A11 mediates water flux across the corneal endothelial cell basolateral membrane as part of the endothelial water pump) was measured upon treatment with ophthalmic NSAIDs.

Results: BRET-assays revealed significant rescue of SLC4A11 mutants to the cell surface by 4 of 5 NSAIDs tested. The NSAIDs, diclofenac and nepafenac, were effective in moving endoplasmic reticulum-retained missense mutant SLC4A11 to the cell surface, as measured by confocal immunofluorescence. Among intracellular-retained SLC4A11 mutants, 20 of 30 had significant restoration of cell surface abundance upon treatment with diclofenac. Diclofenac restored mutant SLC4A11 water flux activity to the level of wild-type SLC4A11 in some cases.

Conclusions: These results encourage testing diclofenac eye drops as a treatment for corneal dystrophy in patients whose disease is caused by some SLC4A11 missense mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app