Add like
Add dislike
Add to saved papers

Assessment of Sleep Spindle Density among Genetically Positive Spinocerebellar Ataxias Types 1, 2, and 3 Patients.

Objective: The effect of thalamic degeneration in patients with spinocerebellar ataxias (SCA) and sleep spindle (SS) abnormalities has not been studied so far, although there is a strong association between these disorders. This study was done to evaluate and compare the SS densities (SSDs) of genetically proven autosomal dominant SCA1, SCA2 and SCA3 patients with controls.

Methods: Prospectively and genetically confirmed cases of SCA and controls were recruited. Patients were assessed clinically, were evaluated with sleep questionnaires and an overnight polysomnography was performed. SSDs were analyzed using neuroloop gain plugin of Polyman version 1.15 software.

Results: Eighteen patients of SCA1 ( n = 6), SCA2 ( n = 5), SCA3 ( n = 7) and 6 controls were recruited in our study. The mean age of SCA1 patients was 39.2 ± 5.4, of SCA2 patients was 30.8 ± 9.5 and of SCA3 patients was 35.4 ± 6.4 years. The mean duration of illness in SCA1 was 4.7 ± 1.7 years, in SCA2 it was 4.3 ± 4.4 years and in SCA3 it was 5 ± 2.3 years. The median SSD values (percentage loop gain) during stage 2 of non-rapid eye movement sleep were 16.9% in SCA1, 0% in SCA2, 1.2% in SCA3 and 59.5% in controls. There was a significant difference in SSD values in SCA2 ( p = 0.04), SCA3 ( p = 0.02) patients and controls.

Conclusion: SSDs were significantly decreased in patients with SCA, which is a novel finding. This is likely due to the "thalamic switch" disruption, observed as reduced SSDs in SCA2 and SCA3. Sleep spindle deficits could act as one of the biomarkers of ongoing neurodegeneration in the thalamic circuitry of SCA patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app