Add like
Add dislike
Add to saved papers

Infection dynamics of endosymbionts reveal three novel localization patterns of Rickettsia during the development of whitefly Bemisia tabaci.

The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a severe agricultural pest that harbors at least seven endosymbionts. Many important aspects of the symbiosis mechanism between these bacterial endosymbionts and their hosts are poorly understood, such as endosymbiont proliferation dynamics, spatial distribution and titer regulation during host development. In this study, infection by bacterial endosymbionts in the whitefly B. tabaci Middle East-Asia Minor-1 (MEAM1, formerly B biotype) South China population, their infection titers in various stages of whitefly host development and their spatial localization were investigated. Results revealed that the MEAM1 B. tabaci harbors the primary symbiont Portiera and secondary symbionts Rickettsia and Hamiltonella. The titers of these three endosymbionts increased with the development of their B. tabaci host. Significant proliferation of Portiera and Hamiltonella mainly occurred during the second to fourth instar nymphal stages, while Rickettsia proliferated mainly during adult eclosion. Fluorescence in situ hybridization analysis of B. tabaci adults revealed three novel infection patterns of Rickettsia: assemblage in the bacteriocytes that scattered through the entire abdomen of the female host, localization in wax glands and localization in the colleterial gland. These novel infection patterns may help to uncover the function of Rickettsia in its insect hosts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app