Add like
Add dislike
Add to saved papers

Associations between Fetal Size, Sex and Placental Angiogenesis in the Pig†.

Inadequate fetal growth cannot be remedied postnatally, leading to severe consequences for neonatal and adult development. It is hypothesized that growth restriction occurs due to inadequate placental vascularization. This study investigated the relationship between porcine fetal size, sex and placental angiogenesis at multiple gestational days (GD).Placental samples supplying the lightest and closest to mean litter weight (CTMLW), male and female Large White X Landrace fetuses were obtained at GD30, 45, 60 and 90. Immunohistochemistry revealed increased chorioallantoic membrane CD31 staining in placentas supplying the lightest compared to those supplying the CTMLW fetuses at GD60. At GD90, placentas supplying the lightest fetuses had decreased CD31 staining in the CAM compared to those supplying the CTMLW fetuses. The mRNA expression of 6 candidate genes with central roles at the feto-maternal interface increased with advancing gestation. At GD60, ACP5 expression was increased in placentas supplying the lightest compared to the CTMLW fetuses. At GD45, CD31 expression was decreased in placentas supplying the lightest compared to the CTMLW fetuses. In contrast, CD31 expression was increased in placentas supplying the lightest compared the CTMLW fetuses at GD60. In vitro endothelial cell branching assays demonstrated that placentas supplying the lightest and male fetuses impaired endothelial cell branching compared to media from the CTMLW (GD45 and 60) and female fetuses (GD60), respectively.This study has highlighted that placentas supplying the lightest and male fetuses have impaired angiogenesis. Importantly, the relationship between fetal size, sex and placental vascularity is dynamic and dependent upon the GD investigated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app