Add like
Add dislike
Add to saved papers

Silymarin nanoformulation as potential anticancer agent in experimental Ehrlich ascites carcinoma-bearing animals.

Nanomedicine 2018 August 2
AIM: This study aimed to evaluate, for the first time the potential use of a safe biocompatible nanoformulation of silymarin (SM) as antitumor agent and to provide its mechanism of action compared with native SM.

MATERIALS & METHODS: SM was loaded into pluronic nanomicelles and Ehrlich ascites carcinoma-tumor-bearing mice were used as experimental model. Biochemical parameters including SOD, CAT and GSH, lipid peroxidation biomarkers (MDA), histopathological, ultrastructural and immunohistochemical studies were applied on the Ehrlich ascites carcinoma cells. Furthermore, the cell cycle as well as caspase-3 were examined.

RESULTS & CONCLUSION: Nanoformulated SM (SMnp) destroyed tumors via increasing SOD, CAT and GSH concomitant with decreasing MDA. Moreover, SMnp-induced apoptosis through decreasing Ki-67 and Bcl2 expression, along with the activation of caspase-3, leads to inhibition of proliferation and the arrest of ceel cycle progression at the G1/S phase. Electron microscopy studies presented the superiority of SMnp over native SM in causing mitochondrial and nuclear degeneration in cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app