Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fabrication of three-dimensional nanofibrous gelatin scaffolds using one-step crosslink technique.

Electrospun nanofibers have been considered to be an ideal scaffold for tissue engineering, because of the extracellular-matrix-like structure and the well-controlled fabrication. Here, a new method was used to fabricate electrospun three-dimensional macroporous nanofibrous gelatin scaffolds in ethanol bath by one-step crosslink with glutaraldehyde. The mean diameter of the one-step crosslinked fibers was significantly smaller than that of the traditional two-step crosslinked fibers (p < 0.05), and scaffolds prepared by one-step crosslink were fluffy and porous. No significant difference was found in the degradation rates for both fibers within 14 days. After immersion in PBS for 14 days, numerous two-step crosslinked fibers merged together. By contrast, the morphology and macroporous structure of one-step crosslinked fibers showed no evident change and were generally maintained. Approximate crosslinking degrees of the two-step and one-step crosslinked gelatin fibers were 40% and 54%, respectively (p < 0.05). Results from fluorescence microscopy and hematoxylin-eosin staining showed that MC3T3-E1 subclone four cells were distributed more evenly and diversely in the one-step crosslinked fiber scaffolds. The one-step crosslinked fibers enhanced the proliferation and differentiation potential of MC3T3-E1 cells. Furthermore, one-step crosslinked fibers were beneficial in repairing defects in the skulls of rats. Thus, one-step crosslink by glutaraldehyde in ethanol bath is a cost-effective and simple method to fabricate three-dimensional macroporous nanofiberous scaffolds. This technique retains the morphology and structure of the gelatin fibers, and enhances the biological performance of scaffolds in vitro and in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app