Add like
Add dislike
Add to saved papers

Protective role of glucocorticosteroid prior to endotoxin exposure in cultured neonatal type II alveolar epithelial cells.

BACKGROUND: Dexamethasone (DEX) is widely used for antenatal lung maturation and has been investigated to prevent premature lung injury by inhibiting postnatal inflammation. Its pharmacological mechanisms in the treatment of bacterial infection-induced injury of neonatal lung parenchymal cells remain to be clarified. We hypothesized that DEX pretreatment may attenuate endotoxin-induced growth suppression and regulate cytokine mRNA expression in cultured neonatal type II alveolar epithelial cells (AEC-II).

METHODS: AEC-II of newborn piglets were freshly isolated and cultured. After pretreatment of 0.01, 0.1, 1.0 and 10 μmol/l DEX (E0.01, E0.1, E1.0 and E10 group, respectively) for 24 h, the cells were cultured with 1 μg/ml lipopolysaccharides (LPS) for 7 days with medium replacement every 24 h. Messenger RNA expression of surfactant proteins (SPs), pro-inflammatory cytokines and multiple growth factors (GF) were determined by RT-PCR, along with the cell growth and apoptosis measurements.

RESULTS: LPS without DEX pretreatment suppressed cell proliferation, enhanced expression of pro-inflammatory cytokine mRNA and apoptosis, which was ameliorated in all DEX-pretreated groups on day 3. On day 3 and 5, only cells pretreated by E1.0 and E10 showed a 20-fold increase in insulin-like GF-1 mRNA expression whereas the expression of other GFs was down-regulated. LPS exposure reduced the expression of SP-A, B, C and Aquaporin-5 mRNA on day 3-7. However, the expression of SP-C mRNA was increased in E1.0 on day 3, which was supported by in situ expression of pro-SP-C with immunocytochemical assay.

CONCLUSION: LPS-induced in vitro AEC-II injury was partially prevented by DEX pretreatment, with 1.0 μmol/l being the potentially optimal concentration. (253 words).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app