Add like
Add dislike
Add to saved papers

Gordon Dixon, protamines, and the atypical patterns of gene expression in spermatogenic cells.

Gordon Dixon's pioneering work on the replacement of histones by protamines during spermatogenesis inspired research as recombinant DNA became widely used to analyze gene expression in mammalian spermatogenic cells. The impact of recombinant DNA began immediately with the identification of mouse protamine 1 as a haploid-expressed mRNA, resolving a decades-long controversy whether gene expression in haploid spermatogenic cells distorts transmission of alleles to progeny. Numerous insights into the biology of spermatogenesis followed as the sequences of many mRNAs revealed that the patterns of gene expression in spermatogenic cells are astonishingly different from those in other cells in the mammalian body. Studies of these phenomena have generated fundamental insights across reproductive, molecular and evolutionary biology.

ABBREVIATIONS: PRM1: protamine 1; PRM2: protamine 2; TCE: translation control element.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app