Add like
Add dislike
Add to saved papers

Real-time microrobot posture recognition via biplane X-ray imaging system for external electromagnetic actuation.

PURPOSE: As a promising intravascular therapeutic approach for autonomous catheterization, especially for thrombosis treatment, a microrobot or robotic catheter driven by an external electromagnetic actuation system has been recently investigated. However, the three-dimensional (3D) real-time position and orientation tracking of the microrobot remains a challenge for precise feedback control in clinical applications owing to the micro-size of the microrobot geometry in vessels, along with bifurcation and vulnerability. Therefore, in this paper, we propose a 3D posture recognition method for the unmanned microrobotic surgery driven by an external electromagnetic actuator system.

METHODS: We propose a real-time position and spatial orientation tracking method for a millimeter-sized intravascular object or microrobot using a principal component analysis algorithm and an X-ray reconstruction. The suggested algorithm was implemented to an actual controllable wireless microrobot system composed of a bullet-shaped object, a biplane X-ray imaging device, and an electromagnetic actuation system. Numerical computations and experiments were conducted for the performance verification.

RESULTS: The experimental results showed a good performance of the implemented system with tracking errors less than 0.4 mm in position and 2° in orientation. The proposed tracking technique accomplished a fast processing time, ~ 0.125 ms/frame, and high-precision recognition of the micro-sized object.

CONCLUSIONS: Since the suggested method does not require pre-information of the object geometry in the human body for its 3D shape and position recognition, it could be applied to various elliptical shapes of the microrobot system with computation time efficacy and recognition accuracy. Hence, the method can be used for therapeutic millimeter- or micron-sized manipulator recognition in vascular, as well as implanted objects in the human body.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app