Add like
Add dislike
Add to saved papers

Forecasting post-flight hip fracture probability using probabilistic modeling.

A probabilistic model predicts hip fracture probability for post-flight male astronauts during lateral fall scenarios from various heights. A biomechanical representation of the hip provides impact load. Correlations relate spaceflight bone mineral density (BMD) loss and post-flight BMD recovery to bone strength. Translations convert fracture risk index, the ratio of applied load to bone strength, to fracture probability. Parameter distributions capture uncertainty and Monte Carlo simulations provide probability outcomes. The fracture probability for a 1 m fall 0 days post-flight is 15% greater than preflight and remains 6% greater than pre-flight at 365 days post-flight. Probability quantification provides insight into how spaceflight induced BMD loss affects fracture probability. A bone loss rate reflecting improved exercise countermeasures and dietary intake further reduces the post-flight fracture probability to 6% greater than preflight at 0 days post-flight and 2% greater at 365 days post-flight. Quantification informs assessments of countermeasure effectiveness. When preflight BMD is one standard deviation below mean astronaut preflight BMD, fracture probability at 0 days post-flight is 34% greater than the preflight fracture probability calculated with mean BMD and 28% greater at 365 days post-flight. Quantification aids review of astronaut BMD fitness for duty standards. Increases in post-flight fracture probability are associated with an estimated 18% reduction in post-flight bone strength. Therefore, a 0.82 deconditioning coefficient modifies force application limits for crew vehicles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app