Add like
Add dislike
Add to saved papers

Bio-inspired self-propelled diatom micromotor by catalytic decomposition of H 2 O 2 under low fuel concentration.

Nanoscale 2018 August 31
Recently, active bubble-propelled micromotors have attracted great attention for fuel applications. However, for generating bubble-propelled micromotors, additional catalysts, such as Pt, Ag, and Ru, are required. These catalysts are expensive, toxic, and highly unstable for broad applications. To overcome these issues, in this study, we present an innovative methodology for the preparation of self-propelled motor machines using naturally occurring diatom frustules. This natural diatom motor shows effective motion in the presence of a very low concentration (0.8%) of H2O2 as a fuel at pH 7. Due to the unique 3D anisotropic shape of the diatom, the self-propelled motor exhibited unidirectional motion with a speed of 50 μm s-1 and followed pseudo first-order kinetics. It was found that a trace amount of iron oxide (Fe2O3) in the diatom was converted into Fe3O4, which can act as a catalyst to achieve the facile decomposition of H2O2. Interestingly, "braking" of the unidirectional motion was observed upon treatment with EDTA, which blocked the catalytically active site. These results illustrate that diatom catalytic micromotors have opened a new era in the field of catalysis and bioengineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app