JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

KIF1Bβ mutations detected in hereditary neuropathy impair IGF1R transport and axon growth.

KIF1Bβ is a kinesin-3 family anterograde motor protein essential for neuronal development, viability, and function. KIF1Bβ mutations have previously been reported in a limited number of pedigrees of Charcot-Marie-Tooth disease type 2A (CMT2A) neuropathy. However, the gene responsible for CMT2A is still controversial, and the mechanism of pathogenesis remains elusive. In this study, we show that the receptor tyrosine kinase IGF1R is a new direct binding partner of KIF1Bβ, and its binding and transport is specifically impaired by the Y1087C mutation of KIF1Bβ, which we detected in hereditary neuropathic patients. The axonal outgrowth and IGF-I signaling of Kif1b-/- neurons were significantly impaired, consistent with decreased surface IGF1R expression. The complementary capacity of KIF1Bβ-Y1087C of these phenotypes was significantly impaired, but the binding capacity to synaptic vesicle precursors was not affected. These data have supported the relevance of KIF1Bβ in IGF1R transport, which may give new clue to the neuropathic pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app