Add like
Add dislike
Add to saved papers

Transcriptome mining of non-BRCA1/A2 and BRCA1/A2 familial breast cancer.

About 10% of all breast cancer cases are the familial type. Mutations in two highly penetrance breast cancer susceptibility genes, BRCA1 and BRCA2, can only explain 20% to 25% of genetic susceptibility to breast cancer, and most familial breast cancer cases have intact BRCA1 and BRCA2 genes that refer to non-BRCA1/A2 or BRCAX familial breast cancer. Despite extensive studies, more than 50% of genetic susceptibility to breast cancer remained to be disclosed. Finding the differences between these two types of breast cancer (non-BRCA1/A2 and BRCA1/A2) at genomic, transcriptomic, and proteomic levels can help us to elucidate fundamental molecular processes and develope more promising therapeutic targets. Here, we used expression data of 391 patients with familial breast cancer including 195 non-BRCA1/A2 and 196 BRCA1 and/or BRCA2 cases from four independent studies by means of meta-analysis to find differences in gene expression signature between these two types of familial breast cancer. As well as, we applied comprehensive network analysis to find crucial protein complexes and regulators for each condition. Our results revealed significant overexpression of cell cycle processes in BRCA1/A2 patients and significant overexpression of estrogen axis in non-BRCA1/A2 patients. Moreover, we found FOXM1 as the central regulator of cell cycle processes and GATA3, FOXA1, and ESR1 as the main regulators of estrogen axis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app