Add like
Add dislike
Add to saved papers

Reduction of the 13 C cross-polarization experimental time for pharmaceutical samples with long T 1 by ball milling in solid-state NMR.

Many pharmaceutical samples have notably long 1 H T1 (proton spin-lattice relaxation time), leading to lengthy experiments lasting several days in solid-state NMR studies. In this work, we propose the use of ball milling on the pharmaceutical samples to reduce the 1 H T1 , which also leads to enhanced sensitivity in {1 H}-13 C Cross-Polarization (CP) experiments due to reduced particle sizes and increased surface areas of the samples. Experimentally, we determined that depending on the substrates and milling time, the signal-to-noise ratio (S/N) of a 1D 13 C CP spectrum can be increased by a factor of 3-6, which means that the experimental time can be shortened by a factor of 9-36. Furthermore, the application of simple ball-milling within a short time avoids the amorphization of the studied samples such that no signal due to amorphous state is observed in the 13 C CP spectrum. This simple ball milling method used for sensitivity enhancement can be further applied in the SS-NMR studies of pharmaceutical samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app