Add like
Add dislike
Add to saved papers

MicroRNA expression profiling of dibenzalacetone (DBA) treated intracellular amastigotes of Leishmania donovani.

BACKGROUND: Among different leishmanial infections, visceral leishmaniasis (VL) if not treated is the most severe form with high mortality rates. In India, it is caused by the protozoan parasite Leishmania donovani. The therapy of visceral leishmaniasis is limited due to high toxicity, resistance to existing drugs and increasing cases of Leishmania co-infections. Hence, there is a need to identify novel drug and targets to overcome these hindrances. MicroRNAs (miRNAs) are a class of small non-coding RNAs (∼22-24 nucleotide in length) that regulate gene expression in various biological processes. They play as intracellular mediators that are essential for different biological processes.

OBJECTIVES: The aim of present study is to explore the leishmaniacidal role of trans-dibenzalacetone (DBA, a synthetic monoketone analog of curcumin) on the expression profile of miRNA in intracellular amastigotes of Leishmania donovani.

METHODS: Small RNA libraries of samples (macrophages-infected with Leishmania amastigotes; and infected macrophages treated with DBA) were prepared by using Illumina Trueseq Small RNA kit.

RESULTS: Using miRDIP database, we identified target gene of differentially expressed miRNAs (target miRNAs: hsa-mir-15b, hsa-mir-671, hsa-mir-151a and has-mir-30c) which was confirmed by real time stem-loop PCR. Ten KEGG pathways were significantly enriched with these target miRNA genes and they mainly relate to mitogen-activated protein kinases (MAPK) pathway. We have previously established the antiproliferative and apoptotic effect of trans-dibenzalacetone (DBA, a synthetic monoketone analog of curcumin) on the Leishmania donovani parasites. In the present study, using GFP-ATG8 gene as a marker for tracking putative autophagosomes, we confirmed that autophagic vacuolization may lead to autophagic cell death in the DBA-treated parasites. Our results demonstrated that curcumin analog DBA has a role to play in regulating the balance between autophagy and apoptosis.

CONCLUSIONS: We conclude that curcumin analog DBA triggers imbalance between two known phenotypes of cell death viz apoptosis and autophagy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app