Add like
Add dislike
Add to saved papers

A novel in vitro experimental system for the evaluation of enteric drug metabolism: Cofactor-supplemented permeabilized cryopreserved human enterocytes (MetMax™ Cryopreserved Human Enterocytes).

We report here an evaluation of a novel experimental system- cofactor-supplemented permeabilized cryopreserved human enterocytes (MetMax™ cryopreserved human enterocytes (MMHE), patent pending) for applications in the evaluation of enteric drug metabolism. A major advantage of MMHE over conventional cryopreserved human enterocytes (CCHE) is the simplification of the use procedures including storage at -80o C instead of in liquid nitrogen, and use of the cells immediately after thawing without a need for centrifugation and microscopic evaluation of cell density and viability and cell density adjustment. In this study, we compared MMHE and CCHE in key phase 1 oxidation and phase 2 conjugation drug metabolism enzyme (DME) activities that we recently reported for cryopreserved human enterocytes: CYP2C9 (diclofenac 4'- hydroxylation), CYP2C19 (s-mephenytoin hydroxylation), CYP3A4 (midazolam 1'-hydroxylation and testosterone 6β-hydroxylation), CYP2J2 (astemizole O-demethylation), uridine 5'-diphospho-glucuronosyltransferase (UGT; 7-hydroxycoumarin glucuronidation), sulfotransferase (SULT; 7-hydroxycoumarin sulfation), N-acetyl transferase-1 (NAT-1; p-benzoic acid N-acetylation), and carboxyesterase-2 (CES-2; hydrolysis of irinotecan to SN38). Both CCHE and MMHE were active in all the DME pathways evaluated, with specific activities of MMHE ranged from 142% (CYP2C9) to 1713% (UGT) of that for CCHE. Our results suggest that the MMHE system represents a convenient and robust in vitro experimental system for the evaluation of enteric drug metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app