Add like
Add dislike
Add to saved papers

The rs1625579 T>G polymorphism in the miRNA-13 gene confers a risk of early- onset Kawasaki disease in a southern Chinese population.

Background: Kawasaki disease (KD) mainly manifests as excessive inflammation and vascular endothelial cell injury. This disease generally occurs in children younger than 5 years of age and is more severe in children younger than 12 months. KD affects males and females at a ratio of 1.5:1. Polymorphisms of the rs1625579 locus in the miR-13 gene are associated with schizophrenia susceptibility, and high glucose-induced upregulation of miR-137 in vascular endothelial cells promotes monocyte chemotaxis and inflammatory cytokine secretion in gestational diabetes mellitus. However, researchers have not reported whether rs1625579 is associated with KD susceptibility or onset. Therefore, we investigated the relationship between the miRNA-13 rs1625579 T>G polymorphism and KD susceptibility.

Methods: TaqMan real-time polymerase chain reaction was applied to determine the genotypes of 532 patients with KD (365 males and 167 females) and 623 control subjects (402 males and 221 females).

Results: Comparison of all cases with all controls revealed that the rs1625579 T>G polymorphism was not associated with KD susceptibility. However, a subgroup analysis revealed that subjects with the rs1625579 TG/GG genotypes exhibited a significantly higher onset risk for KD before 12 months of age than carriers of the TT genotype (adjusted age and gender odds ratio=1.99, 95% CI=1.04-3.83; P =0.039).

Conclusion: Our results indicate that the rs1625579 T>G polymorphism confers a risk of early-onset KD in southern Chinese children.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app