Add like
Add dislike
Add to saved papers

Acute oral administration of L-leucine upregulates slow-fiber- and mitochondria-related genes in skeletal muscle of rats.

Nutrition Research 2018 September
Branched-chain amino acids promote both protein and mRNA synthesis through mechanistic target of rapamycin (mTOR) signaling. A previous report demonstrated that chronic branched-chain amino acid supplementation increased mitochondrial biogenesis in the skeletal muscle of middle-aged mice through activation of mTOR signaling. In this study, we hypothesized that the acute oral administration of L-leucine alone has the ability to alter the gene expression related to fiber type and metabolism in skeletal muscle of young rats through the activation of mTOR signaling. Although the gene expression of representative glycolytic enzymes (Hk2 and Eno3) was not altered, L-leucine administration (135 mg/100 g body weight) upregulated the expression of slow-fiber-related genes (Myh7, Myl3, and Tnni1) and a mitochondrial biogenesis-related gene (Ppargc1a) in the soleus and extensor digitorum longus muscles compared with the control. In addition, L-leucine treatment also upregulated the slow-fiber genes and mitochondrial gene expression in cultured C2C12 myotubes, whereas rapamycin inhibited the effects of L-leucine. However, L-alanine, L-phenylalanine, and L-valine treatment did not alter the expression of the fiber type- and metabolism-related genes as observed in L-leucine. Our results suggest that L-leucine may have the ability to alter skeletal muscle fiber type toward slow fiber and oxidative metabolism by upregulation of gene expression through mTOR signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app