Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila.

Genome Biology 2018 August 21
BACKGROUND: Population genetic theory predicts that rapid adaptation is largely driven by complex traits encoded by many loci of small effect. Because large-effect loci are quickly fixed in natural populations, they should not contribute much to rapid adaptation.

RESULTS: To investigate the genetic architecture of thermal adaptation - a highly complex trait - we performed experimental evolution on a natural Drosophila simulans population. Transcriptome and respiration measurements reveal extensive metabolic rewiring after only approximately 60 generations in a hot environment. Analysis of genome-wide polymorphisms identifies two interacting selection targets, Sestrin and SNF4Aγ, pointing to AMPK, a central metabolic switch, as a key factor for thermal adaptation.

CONCLUSIONS: Our results demonstrate that large-effect loci segregating at intermediate allele frequencies can allow natural populations to rapidly respond to selection. Because SNF4Aγ also exhibits clinal variation in various Drosophila species, we suggest that this large-effect polymorphism is maintained by temporal and spatial temperature variation in natural environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app