Add like
Add dislike
Add to saved papers

Cladolosides C 4 , D 1 , D 2 , M, M 1 , M 2 , N and Q, new triterpene glycosides with diverse carbohydrate chains from sea cucumber Cladolabes schmeltzii. An uncommon 20,21,22,23,24,25,26,27-okta-nor-lanostane aglycone. The synergism of inhibitory action of non-toxic dose of the glycosides and radioactive irradiation on colony formation of HT-29 cancer cells.

Eight new triterpene olygoglycosides, cladolosides C4 (1), D1 (2), D2 (3), M (4), M1 (5), M2 (6), N (7) and Q (8), were isolated from the tropical Indo-West Pacific sea cucumber Cladolabes schmeltzii (Sclerodactylidae, Dendrochirotida). Structures of these glycosides were elucidated by 2D NMR spectroscopy and HR ESI mass spectrometry. A novel hexasaccharide carbohydrate chain having xylose residues as the first, second and third sugars was found in the glycoside 7. Cladoloside C4 (1) contains an uncommon 20,21,22,23,24,25,26,27-octa-norlanostane aglycone. Cladolosides D1 (2), D2 (3) and Q (8) were new representatives of the hexaosides with a non-methylated terminal sugar unit in the "upper" half-chain. Cytotoxic activities of the isolated compounds against ascite form of mouse Ehrlich carcinoma cells, mouse erythrocytes and human colorectal adenocarcinoma HT-29 cells were examined and their structure-activity relationships were analyzed. In addition, the majority of tested compounds, except for cladoloside D2 (3), inhibited the colony formation and growth of HT-29 cells at non-cytotoxic concentrations. The highest inhibitory activity was demonstrated by cladoloside M1 (5). Moreover, synergism of effects of radioactive irradiation and non-toxic dose of compounds 1-8 decreasing the number of colonies of HT-29 cells was observed. Cladoloside N (7) was the most active and increased the inhibitory effect from radiation by 75%. The biosynthetic transformations of the aglycones are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app