Add like
Add dislike
Add to saved papers

Genetic deletion of the Angiotensin-(1-7) receptor Mas leads to a reduced ovulatory rate.

Peptides 2018 September
Angiotensin-(1-7) [Ang-(1-7)] is a component of Renin-Angiotensin System (RAS) that acts through activation of the G-protein-coupled receptor Mas. Recent studies highlight Ang-(1-7) as an intermediate of gonadotropin in ovarian physiology. Genetically Mas-deficient mice allow the investigation of Ang-(1-7) in the ovulatory process. Therefore, the present study aimed to analyze the effects of Mas gene deletion on ovulation to confirm our hypothesis that Mas Knockout (Mas-KO) mice exhibit impairment in the ovulatory outcome. First, we evaluated the breeding data from our animal facilities and from a breeding experiment. The ovulation was observed directly from oviducts after a superovulation protocol and in the estrus morning. We also checked the follicular pool and mRNA expression of Insulin-like growth factor-1 (IGF-1) in ovaries to investigate a possible reason underlying the reduced ovulation. Mas-KO mice showed a reduced litter size and decreased spontaneous ovulatory rate. Ovarian stimulation by gonadotropins reversed ovulation outcome in Mas-KO mice. Mas deficiency also promoted a reduced ovarian follicular pool and lower IGF-1 mRNA levels, suggesting that Mas receptor plays a role in the survival of ovarian follicle. The reduction of ovulatory rate highlights the relevance of Ang-(1-7)/Mas axis in female reproduction, probably through a reduction of IGF-1 mRNA levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app