Add like
Add dislike
Add to saved papers

N 2 O emission from a temperate forest soil during the freeze-thaw period: A mesocosm study.

Nitrous oxide (N2 O) is an important greenhouse gas and is involved in the destruction of ozone layer. However, the underlying mechanisms of the high soil N2 O emission during the freeze-thaw (FT) period are still unclear. Here, we conducted a mesocosm study with high frequency in situ measurements to explore the responses of soil microbes to the FT cycles and their influences on soil N2 O emission. We found the high N2 O emission rate during the FT period was mainly due to the release of substrates, the maintenance of high enzyme activities at the freezing stage, and the fast recovery of microbial biomass nitrogen (MBN) and high microbial activities at the thawing stage. Physical isolation of previously produced N2 O was an important mechanism for the higher N2 O flux at the thawing stage. With increasing numbers of the FT cycles, MBN at the thawing stage remained stable and potential dehydrogenase activities at the thawing stage also remained stable after the first eight FT cycles and only declined during the last two cycles, suggesting the sustainability of the biological mechanisms. Our study suggests that although MBN declined, microbial enzymes could maintain high activities at a few degrees Celsius below zero in this temperate forest soil and produce high N2 O fluxes even at the freezing stage, which were trapped under the ice layer and released at the thawing stage, resulting in high soil N2 O emission during the FT period.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app