Add like
Add dislike
Add to saved papers

Toward quantitative three-dimensional microvascular networks segmentation with multiview light-sheet fluorescence microscopy.

Three-dimensional (3-D) large-scale imaging of microvascular networks is of interest in various areas of biology and medicine related to structural, functional, developmental, and pathological issues. Light-sheet fluorescence microscopy (LSFM) techniques are rapidly spreading and are now on the way to offer operational solutions for large-scale tissue imaging. This contribution describes how reliable vessel segmentation can be handled from LSFM data in very large tissue volumes using a suitable image analysis workflow. Since capillaries are tubular objects of a few microns scale radius, they represent challenging structures to reliably reconstruct without distortion and artifacts. We provide a systematic analysis of multiview deconvolution image processing workflow to control and evaluate the accuracy of the reconstructed vascular network using various low to high level, metrics. We show that even if low-level structural metrics are sensitive to isotropic imaging enhancement provided by a larger number of views, functional high-level metrics, including perfusion permeability, are less sensitive. Hence, combining deconvolution and registration onto a few number of views appears sufficient for a reliable quantitative 3-D vessel segmentation for their possible use for perfusion modeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app